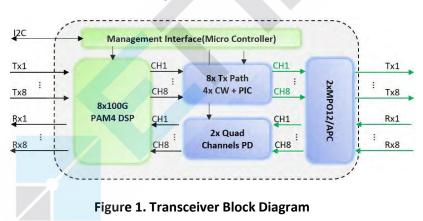


800GBASE-DR8 OSFP112 1310nm 500m DOM SMF Dual DR4 MPO/MTP-12 APC Commercial Temp Arista Compatible


Introduction

This product is an 800Gb/s Octal Small Form-factor Pluggable (OSFP) optical module with top closed fin designed for 500m optical communication applications. The module converts 8 channels of 100Gb/s (PAM4) electrical input data to 8 channels of parallel optical signals via integrated silicon photonics optical path, each capable of 100Gb/s operation for an aggregate data rate of 800Gb/s. Reversely, on the receiver side, the module converts 8 channels of parallel optical signals of 100Gb/s each channel for an aggregate data rate of 800Gb/s into 8 channels of 100Gb/s (PAM4) electrical output data.

An optical fiber cable with dual MPO-12 connector can be plugged into the OSFP112 DR8 module receptacle. Proper alignment is ensured by the guide pins inside the receptacle. The cable usually cannot be twisted for proper channel to channel alignment. Electrical connection is achieved through an OSFP MSA-compliant edge type connector.

12C interface is supported to read and control the status of this product.

Figure 1 shows the transceiver block diagram

- OSFP form factor hot pluggable
- CMIS compliance
- 8 channels of 100G-PAM4 electrical and optical parallel lanes
- Dual Optical port of MPO-12/APC
- Top closed fin
- 500m maximum reach via single mode fiber
- 15 Watts max
- Case temperature range of 0°C to 70°C

Key Features


The transceiver complies with common management interface specification (CMIS). The supported key features listed below allow host software to read and control the transceiver status through I2C.

- Adaptive Tx input equalization
- Programmable Rx output amplitude
- Programmable Rx output pre-cursor
- Programmable Rx output post-cursor
- Supply voltage monitoring (DDM Voltage)
- Transceiver case temperature monitoring (DDM Temperature)
- Tx transmit optical power monitoring for each lane (DDM_TxPower)
- Tx bias current monitoring for each lane (DDM_TxBias)
- Rx receive optical power monitoring for each lane (DDM_RxPower)
- Warning and alarm indication for each DDM function
- Tx & Rx LOL and LOS indication
- Tx fault indication
- Host and line side loopback capabilities
- Host and line side PRBS generator and checker capabilities
- CDB firmware upgrade capability
- Versatile diagnostics monitoring (VDM) capability (optional, additional power consumption increase)
- Other functions defined in CMIS

Applications

The transceiver is designed for Ethernet, Telecom and Infiniband use cases. The application advertisements listed below allow host software to select proper application following CMIS definition

- Application case 1, 8x100G DR, 8 of 100G per channel breakout connections.
- Application case 2, 2x400G DR4, 2 of 400G per port breakout connections.
- Application case 3, 2x200G DR4, 2 of 200G per port breakout connections.
- Application case 4, 1x800G DR8, 1 of 800G per port point to point connection.
- Application case 5, 2x100G PSM4, 2 of 100G per port breakout connections.
- Applications for backward compliance, refer to detailed application list below.

Key Features

The transceiver complies with common management interface specification (CMIS). The supported key features listed below allow host software to read and control the transceiver status through I2C.

- Adaptive Tx input equalization
- Programmable Rx output amplitude
- Programmable Rx output pre-cursor
- Programmable Rx output post-cursor
- Supply voltage monitoring (DDM_Voltage)
- Transceiver case temperature monitoring (DDM Temperature)
- Tx transmit optical power monitoring for each lane (DDM TxPower)
- Tx bias current monitoring for each lane (DDM_TxBias)
- Rx receive optical power monitoring for each lane (DDM RxPower)
- Warning and alarm indication for each DDM function
- Tx & Rx LOL and LOS indication
- Tx fault indication
- Host and line side loopback capabilities
- Host and line side PRBS generator and checker capabilities
- CDB firmware upgrade capability
- Versatile diagnostics monitoring (VDM) capability (optional, additional power consumption increase)
- Other functions defined in CMIS

Applications

The transceiver is designed for Ethernet, Telecom and Infiniband use cases. The application advertisements listed below allow host software to select proper application following CMIS definition

- Application case 1, 8x100G DR, 8 of 100G per channel breakout connections.
- Application case 2, 2x400G DR4, 2 of 400G per port breakout connections.
- Application case 3, 2x200G DR4, 2 of 200G per port breakout connections.
- Application case 4, 1x800G DR8, 1 of 800G per port point to point connection.
- Application case 5, 2x100G PSM4, 2 of 100G per port breakout connections.
- Applications for backward compliance, refer to detailed application list below.

Mixed applications of case 1 and case 2 are also supported.

Table 1 shows CMIS application advertisements list:

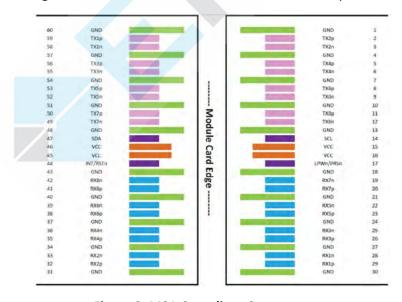


Table 1. CMIS Application advertisements

ApSel	Host Electrical	Module Media	Host and Media	Host Lane
Code	Interface	Interface	Lane Count	Assignment
ApSel 1	50 (400GAUI-4-L C2M)	1C (400GBASE-DR4)	44 (4:4)	11 (lanes 1,5)
ApSel 2	32 (IB NDR)	1C (400GBASE-DR4)	44 (4:4)	11 (lanes 1,5)
ApSel 3	F (200GAUI-4 C2M)	17 (200GBASE-DR4)	44 (4:4)	11 (lanes 1,5)
ApSel 4	31 (IB HDR)	17 (200GBASE-DR4)	44 (4:4)	11 (lanes 1,5)
ApSel 5	4C (100GAUI-1-L C2M)	14 (100GBASE-DR)	11 (1:1)	FF (lanes 1,2,3,4,5,6,7,8)
ApSel 6	52 (800GAUI-8-L C2M)	0 (Undefined)	88 (8:8)	01 (lane 1)
ApSel 7	4F (400GAUI-4-S C2M)	1C (400GBASE-DR4)	44 (4:4)	11 (lanes 1,5)
ApSel 8	4B (100GAUI-1-S C2M)	14 (100GBASE-DR)	11 (1:1)	FF (lanes 1,2,3,4,5,6,7,8)
ApSel 9	51 (800GAUI-8-S C2M)	0 (Undefined)	88 (8:8)	01 (lane 1)
ApSel 10	42 (CAUI-4 C2M with RS FEC)	F (100G PSM4 MSA)	44 (4:4)	11 (lanes 1,5)
ApSel 11	30 (IB EDR)	F (100G PSM4 MSA)	44 (4:4)	11 (lanes 1,5)

4. Pin Map and Description

The electrical interface of OSFP module consist of a 60 contacts edge connector as illustrated by the diagram in Figure 2, which defined in Clause 8.1 of OSFP MSA Specification.

Figure 2. MSA Compliant Connector

Table 2 shows the detailed pin list

OSFP-800G-2DR4-ENC ♦E⊓ET

Table 2 OSFP connector pin list

		Table 2 OSFP connector pin	1130		DI
Pin#	Symbol	Description	Logic	Direction	Plug Sequence
1	GND		Ground		1
2	TX2p	Transmitter Data Non-Inverted	CML-I	Input from Host	3
3	TX2n	Transmitter Data Inverted	CML-I	Input from Host	3
4	GND		Ground		1
5	TX4p	Transmitter Data Non-Inverted	CML-I	Input from Host	3
6	TX4n	Transmitter Data Inverted	CML-I	Input from Host	3
7	GND		Ground		1
8	TX6p	Transmitter Data Non-Inverted	CML-I	Input from Host	3
9	TX6n	Transmitter Data Inverted	CML-I	Input from Host	3
10	GND		Ground		1
11	TX8p	Transmitter Data Non-Inverted	CML-I	Input from Host	3
12	TX8n	Transmitter Data Inverted	CML-I	Input from Host	3
13	GND		Ground		1
14	SCL	2-wire Serial interface clock	LVCMOS-I/O	Bi-directional	3
15	VCC	+3.3V Power		Power from Host	2
16	VCC	+3.3V Power		Power from Host	2
17	LPWn/PRSn	Low-Power Mode / Module Present	Multi-Level	Bi-directional	3
18	GND		Ground		1
19	RX7n	Receiver Data Inverted	CML-O	Output to Host	3
20	RX7p	Receiver Data Non-Inverted	CML-O	Output to Host	3
21	GND		Ground		1
22	RX5n	Receiver Data Inverted	CML-O	Output to Host	3
23	RX5p	Receiver Data Non-Inverted	CML-O	Output to Host	3
24	GND		Ground		1
25	RX3n	Receiver Data Inverted	CML-O	Output to Host	3
26	RX3p	Receiver Data Non-Inverted	CML-O	Output to Host	3
27	GND		Ground		1
28	RX1n	Receiver Data Inverted	CML-O	Output to Host	3
29	RX1p	Receiver Data Non-Inverted	CML-O	Output to Host	3
30	GND	Necesses Bata von inverteu	Ground	output to Host	1
31	GND		Ground		1
32	RX2p	Receiver Data Non-Inverted	CML-O	Output to Host	3
33	RX2n	Receiver Data Inverted	CML-O	Output to Host	3
34	GND	necesses bata inverted	Ground	Sutput to Host	1
35	RX4p	Receiver Data Non-Inverted	CML-O	Output to Host	3
36	RX4n	Receiver Data Inverted	CML-O	Output to Host	3
	GND	neceiver Data inverteu	Ground	Output to Host	1
37		Pacaivar Data Non Inverted	CML-O	Output to Heet	
38	RX6p	Receiver Data Non-Inverted		Output to Host	3
39	RX6n	Receiver Data Inverted	CML-0	Output to Host	
40	GND	Paratisas Pata Man In 1999	Ground	Outrout to Used	1
41	RX8p	Receiver Data Non-Inverted	CML-O	Output to Host	3
42	RX8n	Receiver Data Inverted	CML-O	Output to Host	3
43	GND		Ground	8. 11	1
44	INT/RSTn	Module Interrupt / Module Reset	Multi-Level	Bi-directional	3
45	VCC	+3.3V Power		Power from Host	2

		T = ==	ī	1	
46	VCC	+3.3V Power		Power from Host	2
47	SDA	2-wire Serial interface data	LVCMOS-I/O	Bi-directional	3
48	GND		Ground		1
49	TX7n	Transmitter Data Inverted	CML-I	Input from Host	3
50	TX7p	Transmitter Data Non-Inverted	CML-I	Input from Host	3
51	GND		Ground		1
52	TX5n	Transmitter Data Inverted	CML-I	Input from Host	3
53	TX5p	Transmitter Data Non-Inverted	CML-I	Input from Host	3
54	GND		Ground		1
55	TX3n	Transmitter Data Inverted	CML-I	Input from Host	3
56	TX3p	Transmitter Data Non-Inverted	CML-I	Input from Host	3
57	GND		Ground		1
58	TX1n	Transmitter Data Inverted	CML-I	Input from Host	3
59	TX1p	Transmitter Data Non-Inverted	CML-I	Input from Host	3
60	GND		Ground		1

Table 3 shows the detailed control pins

Table 3. OSFP Control pins

Name	Direction	Description
SCL	BiDir	2-wire serial clock signal. Requires pull-up resistor to 3.3V on host
SDA	BiDir	2-wire serial data signal. Requires pull-up resistor to 3.3V on host.
LPWn/PRSn	Input/Output	Dual Function Signal . Low Power mode is an active-low input signal . Module Present is controlled by a pull-down resistor on the module which gets converted to an active-low output logic signal Voltage zones is shown as figure3.
INT/RSTn	Input/Output	Dual Funtion Signal . Reset is an active-low input signal . Interrupt is an active-high output signal Voltage zones is shown as figure 3.

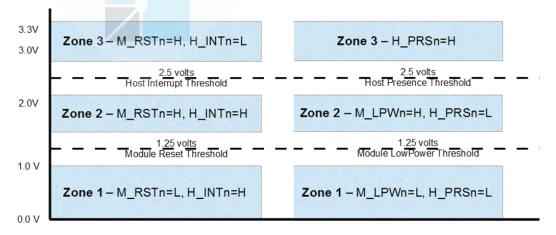


Figure 3. Voltage Zones

Figure 4 shows the recommended power supply filter design

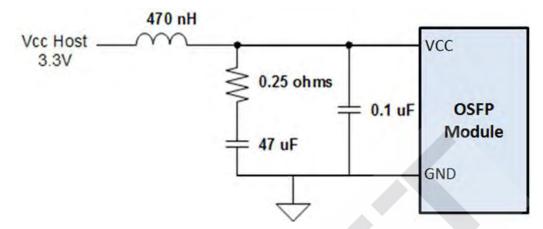


Figure 4. Recommended Power Supply Filter

Optical Port Description

The optical interface port is dual MPO-12 APC receptacle. The transmit and receive optical lanes shall occupy the positions depicted in Figure 5 when looking into the MDI receptacle with the connector keyway feature on top.

Aligned keys are used to ensure alignment between the modules and the patch cords. The optical connector is orientated such that the keying feature of the MPO receptacle is on the top. Note: Two alignment pins are present in each receptacle.

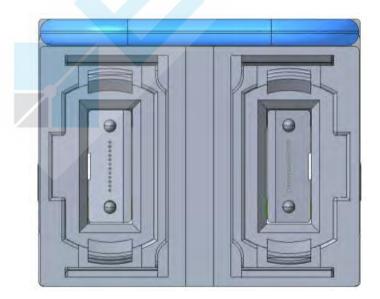


Figure 5. Optical Media Dependent Interface port assignments

Specification

Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min	Max	Units	Notes
Storage Temperature	Ts	-40	85	degC	
Operating Case Temperature	T _{OP}	0	70	degC	
Power Supply Voltage	V _{CC}	-0.5	3.6	٧	
Relative Humidity (non-condensation)	RH	0	85	%	

Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Units	Notes
Operating Case Temperature	T _{OP}	0		70	degC	
Power Supply Voltage	V _{cc}	3.135	3.3	3.465	V	
Data Rate, each Lane			53.125		GBd	PAM4
Data Rate Accuracy		-100		100	ppm	
Pre-FEC Bit Error Ratio				2.4x10 ⁻⁴		
Post-FEC Bit Error Ratio				1x10 ⁻¹⁵		1
Link Distance	D	2		500	m	2

Notes:

- 1. FEC provided by host system.
- 2. FEC required on host system to support maximum distance.

Electrical Characteristics

The following electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Test Point	Min	Typical	Max	Units	Notes
Power Consumption				15	W	
	Module	Input (each Lane)				
Signaling Rate, each Lane	TP1	53.125 ± 100 ppm			GBd	
DC Common-mode input Voltage	TP1	-0.35		2.85	V	
Single-ended input Voltage	TP1a	-0.4		3.3	V	
AC Common-mode RMS input Voltage Low-frequency,VCM _{LF} Full-Band,VCM _{LF}	TP1a	32 80			mV	

TECHNICAL SPECIFICATIONS

OSFP-800G-2DR4-ENC ♦E⊓ET

Module stressed input test		IEEE 802.3ck 120G3.4.3				
Differential Peak-to-Peak input Voltage tolerance	TP1a	750			mV	
Common to Different Mode input Return Loss	TP1	IEEE802.3	3ck Equation	120G-2		
Effective input Return Loss	TP1	8.5			dB	
Differential input Termination Mismatch	TP1			10	%	
	Module	Output (each	Lane)			
Signaling Rate, each lane	TP4	53.2	125 ± 100 ppi	m	GBd	
Differential Peak-to-Peak Output Voltage Short mode Long mode	TP4			600 845	mV	
AC Common Mode Output Voltage, RMS Low-frequency, VCM _{LF} Full-Band, VCM _{LF}	TP4			32 80	mV	
Differential Termination Mismatch	TP4			10	%	
Eye height	TP4	15			mV	
Vertical eye closure, VEC	TP4			12	dB	
Common-mode to Differential mode output Return Loss	TP4	IEEE802.3	3ck Equation	120G-1	dB	
Effective output Return Loss	TP4	8.5			dB	
Output Transition time (20% to 80%)	TP4	8.5			ps	
DC Common-mode output Voltage	TP4	-350		2850	mV	
Differential termination mismatch	TP4			10	%	

OSFP-800G-2DR4-ENC ♦E⊓ET

Optical Characteristics

Parameter	Symbol	Min	Typical	Max	Units	Notes		
Center Wavelength	λc	1304.5	1311	1317.5	nm			
Transmitter								
Data Rate, each Lane		53.12	5 ± 100 ppm		GBd			
Modulation Format			PAM4	T				
Side-mode Suppression Ratio	SMSR	30			dB			
Average Launch Power, each	P _{AVG}	-2.9		4	dBm	1		
Lane	· AVG	2.3			45111	_		
Outer Optical Modulation								
Amplitude (OMA _{outer}), each	P _{OMA}	-0.8		4.2	dBm	2		
Lane								
Launch power in OMA _{outer}								
minus TDECQ					dB			
For ER ≥ 5dB		-2.2						
For ER < 5dB		-1.9						
Transmitter and Dispersion Eye								
Closure for PAM4 (TDECQ), each	TDECQ			3.4	dB			
Lane								
Extinction Ratio	ER	3.5			dB			
RIN _{15.5} OMA	RIN			-136	dB/Hz			
Optical Return Loss Tolerance	TOL			15.5	dB			
Transmitter Reflectance	R_T			-26	dB			
Transmitter Transition Time				17	ps			
Average Launch Power of OFF	D			15	dPm			
Transmitter, each Lane	P _{off}			-15	dBm			
		Receiver				1		
Data Rate, each Lane		53.125 ± 100 ppm			GBd			
Modulation Format		PAM4						
Damage Threshold, each Lane	TH₫	5			dBm	3		
Average Receive Power, each		-5.9		4	dBm	4		
Lane								

Receive Power (OMA _{outer}), each				4.2	dBm			
Receiver Sensitivity (OMA _{outer}), each Lane	SEN			Equation (1)	dBm	5		
Stressed Receiver Sensitivity (OMA _{outer}), each Lane	SRS			-1.9	dBm	6		
Receiver Reflectance	R_R			-26	dB			
LOS Assert	LOSA	-15		-9.9	dBm			
LOS De-assert	LOSD			-6.9	dBm			
LOS Hysteresis	LOSH	0.5			dB			
Conditions of Stress Receiver Sensitivity Test (Note 7)								
Stressed Eye Closure for PAM4 (SECQ), Lane under Test			3.4		dB			
SECQ- 10log ₁₀ (C _{eq})				3.4	dB			

Notes:

- Average launch power, each lane (min) is informative and not the principal indicator of signal strength.
 A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 2. The values for OMA_{outer}(min) vary with TDECQ. Figure 6 illustrates this along with the values for OMA_{outer}(max).
- The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.
- 4. Average receive power, each lane (min) is informative and not the principal indicator of signal strength.

 A received power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 5. Receiver sensitivity (OMA_{outer}) is informative and is defined for a transmitter with a value of TECQ up to 3.4 dB. Receiver sensitivity should meet Equation (1), which is illustrated in Figure 6.

$$S = \max(-3.9, TC - 5.3) B$$
 (1)

Where:

RS is the receiver sensitivity, and

TECQ is the TECQ of the transmitter used to measure the receiver sensitivity.

6. Measured with conformance test signal at TP3 for the BER equal to 2.4x10⁻⁴.

7. These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

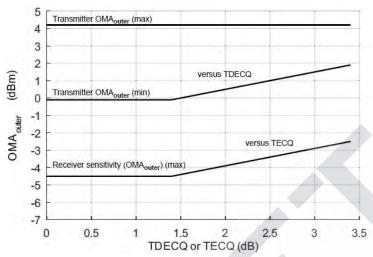


Figure 6. Illustration of Transmitter OMA_{outer} and Receiver Sensitivity Mask for 800G-DR8+

Digital Diagnostic Specifications

The following digital diagnostic characteristics are defined over the normal operating conditions unless otherwise specified.

Parameter	Symbol	Min	Max	Units	Notes
Temperature monitor absolute error	DMI_Temp	-3	3	degC	Over operating temperature range
Supply voltage monitor absolute error	DMI_VCC	-0.1	0.1	V	Over full operating range
Channel RX power monitor absolute error	DMI_RX_Ch	-2	2	dB	1
Channel Bias current monitor	DMI_Ibias_Ch	-10%	10%	mA	
Channel TX power monitor absolute error	DMI_TX_Ch	-2	2	dB	1

Notes:

1. Due to measurement accuracy of different single mode fibers, there could be an additional +/-1 dB fluctuation, or a +/- 3 dB total accuracy.

Mechanical Drawing

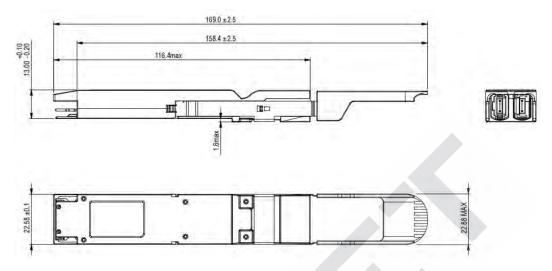


Figure 7. Mechanical Outline

ESD

This transceiver is specified as ESD threshold 1kV for high speed data pins and 2kV for all other electrical input pins, tested per MIL-STD-883, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.

Laser safety

This is a Class I Laser Product, or Class 1 Laser Product according to IEC/EN 60825-1:2014.

This product complies with 21 CFR 1040.10 and 1040.11 except for conformance with IEC 60825-1 Ed. 3., as described in Laser Notice No. 56, dated May 8, 2019.

Caution: Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.